PHYSICAL REVIEW E 70, 016105(2004)

Damage spreading on two-dimensional trivalent structures with Glauber dynamics:
Hierarchical and random lattices
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The damage spreading of the Ising model on various two-dimensional trivalent structures with Glauber
dynamics is investigated. It is shown that topology plays an important role in determining the damage spread-
ing transition temperatures of the trivalent structures. When damage is considered in terms of only the topo-
logical properties of the cellular patterns, the transition temperature above which damage is saturated is found
to be determined by the cells with the highest edge number. When the area of cells is also taken into account
in the computation of damage, the damage spreading transition temperatures are all lowered. These results are
verified by simulation on a set of hierarchical lattices constructed by recursive application of the star-triangle
transformation on the vertices of the hexagonal structure, as well as soap froth and randomized lattice struc-
tures using Voronoi construction.
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[. INTRODUCTION ture of random tiling, so that they may be more relevant for
application in econophysics where random point patterns are
rg)_f primary importance. Other kinds of interesting trivalent
structures constructed by polygons with different areas is the
hierarchical regular lattices, such as the 4-8 latfit2,13

Damage spreadingDS) in the Ising model with a given
dynamics has been studied extensively. DS is a useful tec
nique in the description of the evolution of perturbation

spreading through a cooperative systqd] or random and the 4-6 latticg14], which tile the plane with regular

growth proces$2]. In terms of application, the significance olygons of two kinds. In this paper, we will present a new

of DS can be found in its relevance in the research in man . . >
economic and social phenomena. For example, it may b%?t of hierarchical regular lattices—the 3-12, the 3-6-24, and

useful in business applications when one wants to estimate 3-6-12-48 lattices which are generated from the hexago-

and thereby control the damage incurred by a sudden chan ngl lattice by the star-triangle transformation. The DS of

of alliance of a particular site on the supermarket network OSSt:‘rll%tl;rl‘]ngeal.ré)nStBS}Q dtr;;thhlgrlz;rucg\;a(lj, ﬁg%?ésanv?/evﬂg{:ﬁ'
shopping mall from companyred to companyBlue The y ' y

study of damage spreading on point patterns using differen§ddress here the transition temperatures above which damage

. . preading will saturate in various topologies, with and with-
dynamics may help us to get a better theoretical understan%ut considering the distribution of areas of the cells in the

ing of the competitions between companies in a planar net'frivalent patterns. In Sec. I, we discuss the hierarchical and

work of shops or centers. : . X
Many elements which characterize the damage spreadin:[ge \Voronoi structures. We then discuss the dynamics of

process have been considered in the literature, including th amage spr(_aadlng in an Ising rr]node:]m Se.c- lll. The results
interactions(ferromagnetic[3], antiferromagnetid4], spin are ;ummanzed n Sec. IV, where euristic arguments are
glass[5], etc), the Monte Carlo rulegheat batt6], Glauber prowc_ied to explain the obsgrved transition temperatures.
[4], Metropolis[7], etc), the lattice geometrysquare[1,3)]. Areg mfluenc_e on the interaction strength in the Ising model
triangle [4], cubic [8], etc), and the symmetry of the spin Is discussed in Sec. V.

variables and the external conditiofs.g., magnetic field

[9]). However, none of these works take the topology of the !l HIERARCHICAL AND VORONOI STRUCTURES
structures into consideration. In this paper we will study the

DS on several trivalent structures, as they are topologica), oy |attice, we consider the construction of a set of hierar-
stable. . . . chical trivalent cellular structure based on the star-triangle
In recent years, much attention has been paid to the trivaznoformation operating on the vertices of the hexagons.
lent ceIIuIa}r structures such.as' soap froth and Voronoirp e simplest trivalent regular lattice is the pure hexagonal
[10,11, which tile the plane with irregular polygons which | yice [Fig. 1(a)]. On each vertex of the hexagon, we replace
have different areas. These structures have the generic feﬁw’e star by a triangle, so that we have a triar,lgle on each

vertex of the original hexagor(This star-triangle transfor-

mation is often used in decimation proceduygd.5] The

*Permanent address: Department of Physics, Inner Mongolia Noresult is a crystal made with 12-gons and triangles. Our

Since the hexagonal cellular structure is dual to the trian-

mal University, Hohhot, P. R. China, 010022 choice on the edge length of the 12-gon is such that it is
TCorresponding author. regular. Following the terminology of Liebmarjh2] for the
*Permanent address: Department of Physics, South China Unived-8 lattice, we call this two-dimensional structure the 3-12

sity of Science and Technology, Guangzhou, China. lattice [Fig. 1(b)]. By repeating this procedure on the triva-
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FIG. 1. Hierarchical trivalent structures generated by the star
triangle transformatio@) The pure hexagonal latticéh) the 3-12
lattice, generated by the first-order star-triangle transformdtpn
the primary cell of the 3-12 lattice(d) the primary cell of the
3-6-24 lattice ande) the primary cell of the 3-6-12-48 lattice

lent vertex, we can get the 3-6-24 lattice composed witl]

24-gon, 6-gon, and triangle@fter the second order star-
triangle transformationand the 3-6-12-48 lattice composed
with 48-gon, 12-gon, 6-gon, and triangléafter the third
order star-triangle transformatipretc.

The number of triangles in these structures are, respe
tively, 0, 2M?, 6M?, and 1842, while the total numbers of
cells in the corresponding lattices aM?, M2+2M?, M?
+2M?+6M?, and M2+2M2+6M?+18M?, where M is the
size of the latticgFig. 1). Thus, the numbers of triangles in

hexagons, 3-12, 3-6-24, 3-6-12-48 lattices over the total
number of cells are 0, 2/3, 2/3, 2/3. This means that thd"

fraction of triangles in the 3-12, 3-6-24, 3-6-12-48 is a con-
stant 2/3. We will see whether the small cells like the tri-
angles play any role in the spreading of damage in the ne

section. For the record, the probability distribution of edge

number in these cells are given as follows. 3-12 lattice
p(3)=2/3,p(12)=1/3; 3-6-24 lattice:p(3)=2/3, p(6)=2/9,
p(12)=1/9; and 3-6-12-48 lattice:p(3)=2/3; p(6)=2/9;
p(12)=2/27; p(48)=1/27. The average coordination num-
bers in all these hierarchical structures are 6.

We also construct the Voronoi patterns from sets of points

randomly distributed in the plane. Different control levels on
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which are described in our previous papdfid,11.The
structure of soap is similar to that of Voronoi's.

Ill. GLAUBER DYNAMICS FOR DAMAGE SPREADING

We use the Monte Carlo method to investigate damage
spreading in these two-dimensional trivalent structures. We
put the spins={+1} on the center of each cell of the pattern,
forming an Ising model defined on the dual lattice. We con-
sider the Hamiltonian of nearest-neighbor Ising model to be
of the form

H=-2 Jjss;, 1)

Wp

whereJ;; >0 is the ferromagnetic exchange interaction coef-
ficient between the nearest-neighbor siteznd j, i.e., the
interaction between the nearest-neighbor aggméygons.

It is natural to relate); with their areas. In order to compare
the DS with and without considering the area influence, two
cases are considered in the calculatiay=J and J;

= (A,A)), whereA is the area of théth cell. The first case is
straightforward as there is no area influence. In the latter
case, which includes the area influence, we illustrate the in-
teraction with an example for the 3-12 lattice. The interaction
between the large celi®oth cellsi andj are 12-gong is
taken asJ;;=J. For interaction between one small and one
arge cell(cell i is a triangle and cel] a 12-gon, we take
Jjj=J* As/As2. In general, the interaction of cellland j of
different areagA;> Ay) is reduced by the ratio of their area
J;=J(Ai/A)). This consideration of area factor in the ferro-

(pjagnetic coupling has an interesting interpretation in econo-

physics[16,17. One can interpret the area of a cell as the
customer base, or resource, of a particular agent in a multi-
agent system. The interaction between agéotsells there-

fore depends quite logically on their power, as measured by
he resource or customer base. For more application of this
odel, please refer to Ref16].

For damage spreading, we first consider a system A which
evolves for a long time to reach equilibrium. We then pro-

ﬂuce a replica B of the system A at equilibrium. t&t0, the

spin in one of the cellwe here generically refer it as the
center cell in B is flipped(damagegland fixed forever after.
The Hamming distancéor damaggin phase space for these
two trivalent structures as a function of time is calculated by

N

1
D(t) = N% (1 - d,80) (2

the minimal distance between any two points are used to

generate different Voronoi cellular patterfis,11. We se-

Where{slA(t)} and {siB(t)} are the two spin configurations of

guentially place a point randomly on the unit square andhe system which subject to the same thermal noise and the

calculate the minimum distana® between this point i and
all other existing points on the square.dif>d., which is a
cutoff distance less than 1N, we accept this point, other-
wise not. This process continues till we deétpoints on the

same set of random number aNds the number of the total
spins on the lattice studied. In this paper, we employ Glauber
dynamics for the evolution of the spin configuratian
={s(t)}, with the transition probability of flipping spin

square. The soap structures are obtained by experimengiven by[18]
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FIG. 2. Averaged damage spreading of various trivalent struc- FIG. 3. Time dependence of the averaged damage spreading of
tures as the function of temperatufeis in units ofJkg, M=20, 15,  the 3-6-24 lattice af=7. “3,” “6,” and “24” indicates that a tri-
15, and 15 for the hexagonal 3-12, 3-6-24, and 3-6-12-48 latticeangle, a hexagon, or a 24-gon in the center area of the lattice is

Details of the Voronoi and soap froth are given in the text. damaged and fixed in configuration B.
AE main cell (or equivalently the relative abundance of tri-
wi(s) = min[l,exp(— —')] , (3) angleg in our hierarchical structures make damage spreading
kT more difficult in structures with main cells with higher edge

number. Thus, in either viewpoint, we expect the critical
temperature for damage spreading rise with the edge number
of the main cell of a given lattice.
In our simulation, we have considered various choices of
IV. NUMERICAL RESULTS cells as the center cell. The results are similar so that in our
presentation, the data represent those cases where the main
First let us consider the simple ca3g=J. The results of cell is the center cell where the spin is fixed in a given state
the averaged damage spreading of various trivalent structuré@s configuration B. No obvious difference occurs if we fix
as the function of temperature are shown in Fig. 2. We caolygons with smaller contiguity numbérin the center area
say that Ty(6) <T(12) <T(24)<T4(48), where T(6), of the lattices in the long time limit, because the memory of
T(12), T«(24), and T{(48) stand for the DS transition tem- the original damaged cell should be lost after a sufficiently
peratures corresponding to the pure hexagonal, 3-12, 3-6-2kng time. But if we focus our attention on the beginning of
and the 3-6-12-48 lattice. Thus, the more complicated théhe damage spreading, the time dependence of damage will
lattice is, the higher the transition temperature for damagehow the dependence of damage on topology. Figure 3 shows
spreading. We can understand this trend from two differenthe time dependence of damage at a given temperature for
points of view. The first one is to consider the triangles in thethe cases we choose different cells as the central damaged
lattices. Note that from the zero order to the third order starcell in the 3-6-24 lattice. Intuitively, the more linkage a cell
triangle transformation, the number of the triangles in correhas, when it is damaged, the more cells will be affected more
sponding lattice are 0,82, 6M?, and 1842, whereM is the  quickly. So when we use the 24-gon as the center cell for the
size of the latticglthe number of the main polygons along fixed spin in configuration B, the system reach the saturated
one direction, see Fig.(4)]. Since we have neglected the damage value fastest.
area influence on the DS in the calculation, we give the tri- Physically, damage measures the fractions of spins that
angle the same level of importance as other polygons. Noware different in configurations A and B. At higher tempera-
when the triangle is damaged, at most three neighboring cellsire (T>Tg) and in long time limit, we observe that the
will be affected, so that the spreading of damage is morelamage value saturates(8t(t— «))=0.5 for all latticeq4].
difficult when other cells with higher edge number, such asSince the spins are put at the centers of the polygons, our
the 6-gon, 12-gon, 24-gon, or the 48-gon are damaged. Ipure hexagonal lattice is in fact of the same topology with
other words, for the lattices with many triangles, higher tem-he triangular lattice in which the spins are put on the verti-
peratures are needed to reach the equilibrium state, resultings. Both of them have six neighbors. Our result for the
in the largerTs,. hexagonal lattice yields &=3.6-3.7, which compares well
From another point of view, the DS transition tempera-with the results of 3.64096 for the ferromagnetic Ising phase
ture, which is a measure of the thermal noise needed ttransition critical temperature in the triangular lattice accord-
spread damage, will be very much dependent on the conding to Ref.[4].
tion of those cells with highest edge number. Once the cells Another important feature we can see from Fig. 2 is that
with highest edge numbéwe call them themain cellg are  the DS of the soap froth and Voronoi behave very similar to
damaged, the spreading is much faster as they have the make pure hexagonal lattice. The reason is easy to understand.
number of neighbors. Since our simple model does not tak&igure 4 shows the distribution of polygons in Voronoi. Al-
into account the area of the cell, the relative rarity of thethough the Voronoi is made with various polygons, the most

whereAE; is the change in energy when spiis flipped. The
results are averaged over 100 configurations.
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35004 Let us assume;; =J[min(A;,Aj)/max(A;, Aj)]. Similar phase
3000 transition phenomena for damage spreading are observed in
various trivalent structures in the long time limit but the DS
. 2500 transition temperatures are obviously lowered, as shown in
g 2000 Fig. 5.
§1500_ First, we compare the DS transition temperatures of the
Z 10001 trivalent regular lattices. The DS transition temperatures of
the 3-12 lattice for the casesJ;=J and Jj
5001 =J[min(A;,A)/maxA;,A)] are 4.8 and 3.4, respectively.
o0 1 S A S S PP BT For the 3-6-24 lattice, these valueslare 6.2hd 3.43, re-
spectively. We see that the DS transition temperatures in both
Polygon lattices with area factors are very close, approximately.3.4

Again, let us take the simple case of 3-12 lattice as example
to explain this result. Sincé,,> > A3, the interaction be-
tween the 12-gon and the triangle is very small and can be
o _ “neglected. The lattice is seen being made of “pure” 12-gons
common polygons are hexagons. Similar property is found iyt the contiguity number of the 12-gons is only 6 due to the
soap froth. Thus, these three kinds of lattices have nearly thgpproximate breakdown of their interactions with triangles.
same topology. On the other hand, the number of polygongo the DS behavior is very similar to the pure hexagonal
with f<6 in Voronoi and soap is not negligible, so the DS attice. The DS transition temperature approaches the pure
transition temperatures in Voronoi and soap are slightly bighexagonal lattice case. The situations are the same for the
ger than that of the pure hexagonal lattice. 3-6-24 lattice and the 3-6-12-48 lattice.

The Voronoi pattern used in Fig. 2 and 4 is generated Ag for the Voronoi and soap structures, we can see from
under the conditiorF=0.4[10]. HereF=d.\N is the factor  Figs. 5c) and Fd) that the DS transition temperatures of the
with the minimal distance between any two points. The SOaRaseJ; =Jmin(A;, A)/max A, A)] (Ts=adwith a=2.1 and
pattern used here is from the experimental data N0.0901_09> for \oronoi and soap, respectivilgre lowered com-
[11]. Other Voronoi or soap structures are also calculated anfareqd with the cas@; =J (a=3.7 and 3.75 for Voronoi and
their critical temperatures of the dynamical transition are apgoap, respectively Since the areas of the polygons with
proximately the same. larger contiguity number are bigger than that of the polygons

V. AREA FACTOR IN DAMAGE with smaller contiguity numbgr on averaggew; law [19] .
), the role of the polygons with larger contiguity number is

Now we consider the area influence on the interactiorenhanced in the cask=Jmin(A; Aj)/maxA; A))].The dam-

coefficient between the nearest-neighbor siggslygons. age spreads faster due to the enhanced linkage of cells. That

FIG. 4. Distribution of numbers of the polygons in a Voronoi
pattern.
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is why the DS transition temperatures are lowered in theperatures, or equivalently, those patterns with main cell that
J;;=J[min(A; Aj)/max(A A))] case. has higher edge number will have higher transition tempera-
tures. When the area influence is taken into consideration
together with the edge number, the transition temperatures in
VI. DISCUSSION general are all lowered. In this case, the damage spreading on

@e regular trivalent lattices are similar to that on the pure

In summary, we have studied the damage spreading of thh | lattice. A detailed Vsi ina Miadal
Ising model on the two-dimensional trivalent structures with exagonal lattice. A more detailed analysis, using Migdal-

Glauber dynamics. We find that topology plays an importanﬁadanoff transformation, will be conducted to relate models
role in determining the damage spreading transition tempera\’y'th area dependent interaction to the hexagonal model.

tures of the trivalent structures. If we neglect the influence of
cell areas on damage spreading and only consider the topol-
ogy, we observe that those patterns with more ogltsly- K.Y. Szeto acknowledges the support of RGC Grant No.
gong with small edge number have larger transition tem-HKUST 6071/02P.
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