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The damage spreading of the Ising model on various two-dimensional trivalent structures with Glauber
dynamics is investigated. It is shown that topology plays an important role in determining the damage spread-
ing transition temperatures of the trivalent structures. When damage is considered in terms of only the topo-
logical properties of the cellular patterns, the transition temperature above which damage is saturated is found
to be determined by the cells with the highest edge number. When the area of cells is also taken into account
in the computation of damage, the damage spreading transition temperatures are all lowered. These results are
verified by simulation on a set of hierarchical lattices constructed by recursive application of the star-triangle
transformation on the vertices of the hexagonal structure, as well as soap froth and randomized lattice struc-
tures using Voronoi construction.
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I. INTRODUCTION

Damage spreading(DS) in the Ising model with a given
dynamics has been studied extensively. DS is a useful tech-
nique in the description of the evolution of perturbation
spreading through a cooperative system[1] or random
growth process[2]. In terms of application, the significance
of DS can be found in its relevance in the research in many
economic and social phenomena. For example, it may be
useful in business applications when one wants to estimate
and thereby control the damage incurred by a sudden change
of alliance of a particular site on the supermarket network or
shopping mall from companyRed to companyBlue. The
study of damage spreading on point patterns using different
dynamics may help us to get a better theoretical understand-
ing of the competitions between companies in a planar net-
work of shops or centers.

Many elements which characterize the damage spreading
process have been considered in the literature, including the
interactions(ferromagnetic[3], antiferromagnetic[4], spin
glass[5], etc.), the Monte Carlo rules(heat bath[6], Glauber
[4], Metropolis [7], etc.), the lattice geometry(square[1,3],
triangle [4], cubic [8], etc.), and the symmetry of the spin
variables and the external conditions(e.g., magnetic field
[9]). However, none of these works take the topology of the
structures into consideration. In this paper we will study the
DS on several trivalent structures, as they are topological
stable.

In recent years, much attention has been paid to the triva-
lent cellular structures such as soap froth and Voronoi
[10,11], which tile the plane with irregular polygons which
have different areas. These structures have the generic fea-

ture of random tiling, so that they may be more relevant for
application in econophysics where random point patterns are
of primary importance. Other kinds of interesting trivalent
structures constructed by polygons with different areas is the
hierarchical regular lattices, such as the 4-8 lattice[12,13]
and the 4-6 lattice[14], which tile the plane with regular
polygons of two kinds. In this paper, we will present a new
set of hierarchical regular lattices—the 3-12, the 3-6-24, and
the 3-6-12-48 lattices which are generated from the hexago-
nal lattice by the star-triangle transformation. The DS of
Ising model on both the hierarchical, soap, and Voronoi
structures are studied with Glauber dynamics. We mainly
address here the transition temperatures above which damage
spreading will saturate in various topologies, with and with-
out considering the distribution of areas of the cells in the
trivalent patterns. In Sec. II, we discuss the hierarchical and
the Voronoi structures. We then discuss the dynamics of
damage spreading in an Ising model in Sec. III. The results
are summarized in Sec. IV, where heuristic arguments are
provided to explain the observed transition temperatures.
Area influence on the interaction strength in the Ising model
is discussed in Sec. V.

II. HIERARCHICAL AND VORONOI STRUCTURES

Since the hexagonal cellular structure is dual to the trian-
gular lattice, we consider the construction of a set of hierar-
chical trivalent cellular structure based on the star-triangle
transformation operating on the vertices of the hexagons.
The simplest trivalent regular lattice is the pure hexagonal
lattice [Fig. 1(a)]. On each vertex of the hexagon, we replace
the star by a triangle, so that we have a triangle on each
vertex of the original hexagon.(This star-triangle transfor-
mation is often used in decimation procedures.) [15] The
result is a crystal made with 12-gons and triangles. Our
choice on the edge length of the 12-gon is such that it is
regular. Following the terminology of Liebmann[12] for the
4-8 lattice, we call this two-dimensional structure the 3-12
lattice [Fig. 1(b)]. By repeating this procedure on the triva-
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lent vertex, we can get the 3-6-24 lattice composed with
24-gon, 6-gon, and triangles(after the second order star-
triangle transformation) and the 3-6-12-48 lattice composed
with 48-gon, 12-gon, 6-gon, and triangles(after the third
order star-triangle transformation), etc.

The number of triangles in these structures are, respec-
tively, 0, 2M2, 6M2, and 18M2, while the total numbers of
cells in the corresponding lattices areM2, M2+2M2, M2

+2M2+6M2, and M2+2M2+6M2+18M2, where M is the
size of the lattice(Fig. 1). Thus, the numbers of triangles in
hexagons, 3-12, 3-6-24, 3-6-12-48 lattices over the total
number of cells are 0, 2/3, 2/3, 2/3. This means that the
fraction of triangles in the 3-12, 3-6-24, 3-6-12-48 is a con-
stant 2/3. We will see whether the small cells like the tri-
angles play any role in the spreading of damage in the next
section. For the record, the probability distribution of edge
number in these cells are given as follows. 3-12 lattice:
ps3d=2/3, ps12d=1/3; 3-6-24 lattice:ps3d=2/3, ps6d=2/9,
ps12d=1/9; and 3-6-12-48 lattice:ps3d=2/3; ps6d=2/9;
ps12d=2/27; ps48d=1/27. The average coordination num-
bers in all these hierarchical structures are 6.

We also construct the Voronoi patterns from sets of points
randomly distributed in the plane. Different control levels on
the minimal distance between any two points are used to
generate different Voronoi cellular patterns[10,11]. We se-
quentially place a point randomly on the unit square and
calculate the minimum distancedi between this point i and
all other existing points on the square. Ifdi .dc, which is a
cutoff distance less than 1/ÎN, we accept this point, other-
wise not. This process continues till we getN points on the
square. The soap structures are obtained by experiments

which are described in our previous papers[10,11].The
structure of soap is similar to that of Voronoi’s.

III. GLAUBER DYNAMICS FOR DAMAGE SPREADING

We use the Monte Carlo method to investigate damage
spreading in these two-dimensional trivalent structures. We
put the spins=h±1j on the center of each cell of the pattern,
forming an Ising model defined on the dual lattice. We con-
sider the Hamiltonian of nearest-neighbor Ising model to be
of the form

H = − o
ki,jl

Jijsisj , s1d

whereJij .0 is the ferromagnetic exchange interaction coef-
ficient between the nearest-neighbor sitesi and j , i.e., the
interaction between the nearest-neighbor agents(polygons).
It is natural to relateJij with their areas. In order to compare
the DS with and without considering the area influence, two
cases are considered in the calculation:Jij =J and Jij
~ sAi ,Ajd, whereAi is the area of theith cell. The first case is
straightforward as there is no area influence. In the latter
case, which includes the area influence, we illustrate the in-
teraction with an example for the 3-12 lattice. The interaction
between the large cells(both cells i and j are 12-gons), is
taken asJij =J. For interaction between one small and one
large cell (cell i is a triangle and cellj a 12-gon), we take
Jij =J* A3/A12. In general, the interaction of celli and j of
different areassAj .Aid is reduced by the ratio of their area
Jij =JsAi /Ajd. This consideration of area factor in the ferro-
magnetic coupling has an interesting interpretation in econo-
physics[16,17]. One can interpret the area of a cell as the
customer base, or resource, of a particular agent in a multi-
agent system. The interaction between agents(or cells) there-
fore depends quite logically on their power, as measured by
the resource or customer base. For more application of this
model, please refer to Ref.[16].

For damage spreading, we first consider a system A which
evolves for a long time to reach equilibrium. We then pro-
duce a replica B of the system A at equilibrium. Att=0, the
spin in one of the cell(we here generically refer it as the
center cell) in B is flipped(damaged) and fixed forever after.
The Hamming distance(or damage) in phase space for these
two trivalent structures as a function of time is calculated by

Dstd =
1

N
o
i=1

N

s1 − dsi
Astd,si

Bstdd, s2d

where hsi
Astdj and hsi

Bstdj are the two spin configurations of
the system which subject to the same thermal noise and the
same set of random number andN is the number of the total
spins on the lattice studied. In this paper, we employ Glauber
dynamics for the evolution of the spin configurations
=hsistdj, with the transition probability of flipping spini
given by [18]

FIG. 1. Hierarchical trivalent structures generated by the star-
triangle transformation.(a) The pure hexagonal lattice,(b) the 3-12
lattice, generated by the first-order star-triangle transformation(c)
the primary cell of the 3-12 lattice,(d) the primary cell of the
3-6-24 lattice and(e) the primary cell of the 3-6-12-48 lattice
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wissd = minF1,expS−
DEi

kBT
DG , s3d

whereDEi is the change in energy when spini is flipped. The
results are averaged over 100 configurations.

IV. NUMERICAL RESULTS

First let us consider the simple caseJij =J. The results of
the averaged damage spreading of various trivalent structures
as the function of temperature are shown in Fig. 2. We can
say that Tss6d,Tss12d,Tss24d,Tss48d, where Tss6d,
Tss12d, Tss24d, and Tss48d stand for the DS transition tem-
peratures corresponding to the pure hexagonal, 3-12, 3-6-24,
and the 3-6-12-48 lattice. Thus, the more complicated the
lattice is, the higher the transition temperature for damage
spreading. We can understand this trend from two different
points of view. The first one is to consider the triangles in the
lattices. Note that from the zero order to the third order star-
triangle transformation, the number of the triangles in corre-
sponding lattice are 0, 2M2, 6M2, and 18M2, whereM is the
size of the lattice[the number of the main polygons along
one direction, see Fig. 1(a)]. Since we have neglected the
area influence on the DS in the calculation, we give the tri-
angle the same level of importance as other polygons. Now
when the triangle is damaged, at most three neighboring cells
will be affected, so that the spreading of damage is more
difficult when other cells with higher edge number, such as
the 6-gon, 12-gon, 24-gon, or the 48-gon are damaged. In
other words, for the lattices with many triangles, higher tem-
peratures are needed to reach the equilibrium state, resulting
in the largerTs.

From another point of view, the DS transition tempera-
ture, which is a measure of the thermal noise needed to
spread damage, will be very much dependent on the condi-
tion of those cells with highest edge number. Once the cells
with highest edge number(we call them themain cells) are
damaged, the spreading is much faster as they have the most
number of neighbors. Since our simple model does not take
into account the area of the cell, the relative rarity of the

main cell (or equivalently the relative abundance of tri-
angles) in our hierarchical structures make damage spreading
more difficult in structures with main cells with higher edge
number. Thus, in either viewpoint, we expect the critical
temperature for damage spreading rise with the edge number
of the main cell of a given lattice.

In our simulation, we have considered various choices of
cells as the center cell. The results are similar so that in our
presentation, the data represent those cases where the main
cell is the center cell where the spin is fixed in a given state
in configuration B. No obvious difference occurs if we fix
polygons with smaller contiguity numberf in the center area
of the lattices in the long time limit, because the memory of
the original damaged cell should be lost after a sufficiently
long time. But if we focus our attention on the beginning of
the damage spreading, the time dependence of damage will
show the dependence of damage on topology. Figure 3 shows
the time dependence of damage at a given temperature for
the cases we choose different cells as the central damaged
cell in the 3-6-24 lattice. Intuitively, the more linkage a cell
has, when it is damaged, the more cells will be affected more
quickly. So when we use the 24-gon as the center cell for the
fixed spin in configuration B, the system reach the saturated
damage value fastest.

Physically, damage measures the fractions of spins that
are different in configurations A and B. At higher tempera-
ture sT.Tsd and in long time limit, we observe that the
damage value saturates atkDst→`dl=0.5 for all lattices[4].
Since the spins are put at the centers of the polygons, our
pure hexagonal lattice is in fact of the same topology with
the triangular lattice in which the spins are put on the verti-
ces. Both of them have six neighbors. Our result for the
hexagonal lattice yields aTs=3.6−3.7, which compares well
with the results of 3.64096 for the ferromagnetic Ising phase
transition critical temperature in the triangular lattice accord-
ing to Ref.[4].

Another important feature we can see from Fig. 2 is that
the DS of the soap froth and Voronoi behave very similar to
the pure hexagonal lattice. The reason is easy to understand.
Figure 4 shows the distribution of polygons in Voronoi. Al-
though the Voronoi is made with various polygons, the most

FIG. 2. Averaged damage spreading of various trivalent struc-
tures as the function of temperature.T is in units ofJkB, M =20, 15,
15, and 15 for the hexagonal 3-12, 3-6-24, and 3-6-12-48 lattice.
Details of the Voronoi and soap froth are given in the text.

FIG. 3. Time dependence of the averaged damage spreading of
the 3-6-24 lattice atT=7. “3,” “6,” and “24” indicates that a tri-
angle, a hexagon, or a 24-gon in the center area of the lattice is
damaged and fixed in configuration B.
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common polygons are hexagons. Similar property is found in
soap froth. Thus, these three kinds of lattices have nearly the
same topology. On the other hand, the number of polygons
with f ,6 in Voronoi and soap is not negligible, so the DS
transition temperatures in Voronoi and soap are slightly big-
ger than that of the pure hexagonal lattice.

The Voronoi pattern used in Fig. 2 and 4 is generated
under the conditionF=0.4 [10]. HereF=dc

ÎN is the factor
with the minimal distance between any two points. The soap
pattern used here is from the experimental data No.0901_09
[11]. Other Voronoi or soap structures are also calculated and
their critical temperatures of the dynamical transition are ap-
proximately the same.

V. AREA FACTOR IN DAMAGE

Now we consider the area influence on the interaction
coefficient between the nearest-neighbor sites(polygons).

Let us assumeJij =JfminsAi ,Ajd /maxsAi ,Ajdg. Similar phase
transition phenomena for damage spreading are observed in
various trivalent structures in the long time limit but the DS
transition temperatures are obviously lowered, as shown in
Fig. 5.

First, we compare the DS transition temperatures of the
trivalent regular lattices. The DS transition temperatures of
the 3-12 lattice for the casesJij =J and Jij

=JfminsAi ,Ajd /maxsAi ,Ajdg are 4.8J and 3.4J, respectively.
For the 3-6-24 lattice, these values are 6.25J and 3.45J, re-
spectively. We see that the DS transition temperatures in both
lattices with area factors are very close, approximately 3.4J.
Again, let us take the simple case of 3-12 lattice as example
to explain this result. SinceA12. .A3, the interaction be-
tween the 12-gon and the triangle is very small and can be
neglected. The lattice is seen being made of “pure” 12-gons
but the contiguity number of the 12-gons is only 6 due to the
approximate breakdown of their interactions with triangles.
So the DS behavior is very similar to the pure hexagonal
lattice. The DS transition temperature approaches the pure
hexagonal lattice case. The situations are the same for the
3-6-24 lattice and the 3-6-12-48 lattice.

As for the Voronoi and soap structures, we can see from
Figs. 5(c) and 5(d) that the DS transition temperatures of the
caseJij =JfminsAi ,Ajd /maxsAi ,Ajdg (Ts=aJwith a=2.1 and
2.2 for Voronoi and soap, respectively) are lowered com-
pared with the caseJij =J (a=3.7 and 3.75 for Voronoi and
soap, respectively). Since the areas of the polygons with
larger contiguity number are bigger than that of the polygons
with smaller contiguity number on average(Lewis law [19]
), the role of the polygons with larger contiguity number is
enhanced in the caseJij =JfminsAi,Ajd /maxsAi,Ajdg.The dam-
age spreads faster due to the enhanced linkage of cells. That

FIG. 4. Distribution of numbers of the polygons in a Voronoi
pattern.

FIG. 5. Comparison of the
phase transition curves of the vari-
ous trivalent structures for the
cases Jij =J and Jij

=JfminsAi ,Ajd /maxsAi ,Ajdg.
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is why the DS transition temperatures are lowered in the
Jij =JfminsAi,Ajd /maxsAi,Ajdg case.

VI. DISCUSSION

In summary, we have studied the damage spreading of the
Ising model on the two-dimensional trivalent structures with
Glauber dynamics. We find that topology plays an important
role in determining the damage spreading transition tempera-
tures of the trivalent structures. If we neglect the influence of
cell areas on damage spreading and only consider the topol-
ogy, we observe that those patterns with more cells(poly-
gons) with small edge number have larger transition tem-

peratures, or equivalently, those patterns with main cell that
has higher edge number will have higher transition tempera-
tures. When the area influence is taken into consideration
together with the edge number, the transition temperatures in
general are all lowered. In this case, the damage spreading on
the regular trivalent lattices are similar to that on the pure
hexagonal lattice. A more detailed analysis, using Migdal-
Kadanoff transformation, will be conducted to relate models
with area dependent interaction to the hexagonal model.
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